
Copyright 2003 Psychonomic Society, Inc. 116

Behavior Research Methods, Instruments, & Computers
2003, 35 (1), 116-124

DMDX is a Win32 program designed to precisely time
the presentation of text, audio, graphical, and video mate-
rial and to enable the measurement of reaction times (RTs)
to these displays with millisecond accuracy. It represents
an extension of a suite of DOS-based programs known as
DMASTR, developed and tested at Monash University in
Australia over a period of 15 years, starting in 1975, by a
team including the first author, Rod Dickinson, Wayne Mur-
ray, and Mike Durham. Graphics and sound capabilities
were added in 1989 by Jonathan Forster, and the extension
to a Windows 9x platform was carried out by Jonathan
Forster at the University of Arizona in 1997.

The purpose of the present article is (1) to inform the re-
search community about the existence of the software and
its capabilities, (2) to provide a nontechnical explanation of
how the software works, and (3) to answer the skepticism
expressed in some quarters about the possibility of using
the Windows operating system in a real-time environment
(see, e.g., Myors, 1999).

First, a brief historical note. The DMASTR suite was
originally developed by the first author in 1975 for a PDP-
11 computer running under RT-11. It was written in as-
sembler code (MACRO) and was an interrupt-driven pro-
gram that synchronized the activity of the display program
with the position of the raster in the display monitor,
thereby enabling accurate measurement of the time inter-

val between when the display actually appeared and when
the subject responded to that display. The RT-11 operating
system gave the programmer total control over all the op-
erations of the computer, so that the programmer knew
precisely when each display event occurred and when each
response was made by the subject. With the advent of far
cheaper IBM-compatible PCs, the switch was made in 1983
to a DOS-based program (DM) written in C with no loss
of control over timing. This version of DMASTR was still
purely text based. In 1989, the second author extended the
system to include graphical displays and sound, using the
Borland Turbographics C library. However, this program
(DMTG) was restricted to a particular graphics format
(not widely supported), a particular speech-editing system
(BLISS, developed by J. Mertus at Brown University), and
as a consequence, it was also limited to a narrow range of
sound cards for which BLISS drivers had been written.

As MacInnes and Taylor (2001) point out, attempting
to stay with DOS means that researchers are restricted to
outdated hardware and software, a problem that becomes
more acute with each passing year. As the supply of sound
cards suitable for DMTG began to dwindle (suppliers
going out of business or completely changing the design
of the card), it became clear that any new application hav-
ing a life span of more than a year or two would have to be
based on the de facto Windows standard. The idea was that
if a piece of hardware worked with Windows, it would also
work with DMASTR. In that way, we could keep abreast
of new technology without having to write new device dri-
vers for every new piece of hardware to come on the mar-
ket. That was the goal that drove the development of
DMDX. In addition, there was the obvious benefit of
greatly enhanced graphics. Furthermore, the fact that
DMDX was a Windows program meant that it used ac-
cepted formats for fonts, image files, and sound f iles,
which in turn gave the user a wide range of support tools.

DMDX is a hybrid name. The DM in the name indicates
its lineage as part of the DMASTR system. The DX refers
to DirectX, a set of DLLs (dynamic link library routines)

Over the years, a number of individuals have made invaluable contri-
butions to the development of the DMASTR system. They include the
late Rod Dickinson (to whose memory this paper is dedicated), Mike
Durham, Wayne Murray, and Kevin Ackley. The support of the Psychol-
ogy Department at the University of Arizona has also been critical, as have
the criticisms, suggestions, complaints, and requests of many colleagues
who have used DMDX. Special thanks go to Matt Davis and Mike Ford
(MRC Cognition and Brain Sciences Unit) and Anna Woollams (Mac-
quarie University). Finally, the senior author expresses his profound
gratitude to the junior author for creating such a professional extension
to the DMASTR family. Correspondence concerning this article should
be addressed to K. I. Forster, Department of Psychology, University of
Arizona, Tucson, AZ 85721 (e-mail: kforster@u.arizona. edu).

DMDX:
A Windows display program
with millisecond accuracy

KENNETH I. FORSTER and JONATHAN C. FORSTER
University of Arizona, Tucson, Arizona

DMDX is a Windows-based program designed primarily for language-processing experiments. It uses
the features of Pentium class CPUs and the library routines provided in DirectX to provide accurate
timing and synchronization of visual and audio output. A brief overview of the design of the program
is provided, together with the results of tests of the accuracy of timing. The Web site for downloading
the software is given, but the source code is not available.

DMDX 117

that gives the Windows programmer access to the actual
hardware—a development driven largely by the need to
provide a fast-action, dynamic gaming experience. When
DMDX requires something to be displayed, it issues a
command to DirectX, not to Windows.

DMDX runs on Win32 machines only (this rules out
Windows 3.1), and DirectX should be available as part of
the system.1 Details of the earlier DOS programs (DM and
DMTG) and the current version of DMDX can be found
at the DMASTR Web site (http://www.u.arizona.edu/
~kforster/dmastr/dmastr.htm). Documentation for Di-
rectX can be obtained by downloading the DirectX De-
velopment Kit from http://www.microsoft.com/directx/
download.asp. However, users of DMDX do not require
an understanding of DirectX.

Timing Problems With a
Multitasking Operating System

The problem with asking Windows to do something at
a specified time is that Windows is a multitasking envi-
ronment. There may be other applications running that
have a higher priority, and hence, the operating system
will not always carry out an operation whenever it is re-
quested. Even if there are no other applications running
(something that we insist on for accurate timing in
DMDX), the Windows kernel may still interrupt the exe-
cution of DMDX to determine whether any other task
needs to be serviced. These tasks may include such things
as networking, disk maintenance, and so forth. Also,
DMDX consists of a number of subprograms (threads) that
carry out different tasks. One thread may be involved in
loading display material into the video RAM, another may
be involved in playing a sound file, while a third may be
monitoring the position of the raster on the video monitor.
All of these processes may be operating at the same time.

The most obvious situation in which this presents a
problem is in the synchronization of the display routines
with the video raster. This is critical for accurate mea-
surement of RT, since the software can measure the RT
only from the time that the appropriate page in the video
RAM is activated, not when the information in that page
actually becomes visible on the monitor screen. If new
material is loaded into a page regardless of the position of
the raster, it is possible that this material will not be dis-
played until the next refresh cycle. To achieve the required
synchronization, the register that indicates the status of the
raster has to be monitored constantly. The signal indicat-
ing that a refresh cycle has been completed is very brief
and is easily missed if the program diverts its attention
from this task, even momentarily. To avoid this, it would
be necessary to constantly monitor the raster position,
which would require a very tight loop, so tight that the pro-
gram would be unable to carry out any other function. Even
so, the Windows kernel regularly interrupts the current ap-
plication for a period longer than the refresh signal, so it
is inevitable that some refresh signals will be missed. To
get around this problem, DMDX is provided with infor-
mation about the refresh cycle time by a sister program,

TimeDX. This program times the refresh cycle and stores
the value in the registry, so that DMDX can later retrieve
this information. If, for example, the refresh cycle is spec-
ified as 16.666 msec, DMDX knows that it can ignore the
raster position if the time since the last refresh cycle is less
than, say, 13 msec. So the thread that is responsible for de-
tecting the retrace signal can be put to sleep for 13 msec
(allowing other threads to operate), but once 13 msec has
elapsed since the last refresh, the retrace thread wakes up
and resumes the task of constant monitoring until the re-
fresh signal is detected.

But a problem arises if some other process with a higher
priority than the retrace thread is required during this crit-
ical phase. If such an interrupt disables the thread just as
the refresh signal is about to occur, the refresh signal will
be missed. This would mean that DMDX would lose track
of 16.6 msec of display time and the current stimulus
would be displayed for at least one extra refresh cycle. For
many applications, this might not matter very much, but
for time-critical procedures such as priming paradigms
with very short prime durations, this error might be intol-
erable. Of course, the problem could be much worse, since
if the probability of missing a refresh signal is reasonably
high, DMDX could lose track of multiple refresh cycles.

The second situation in which a timing problem could
arise is when the subject makes a response. DMDX polls
the state of the input devices every millisecond, and if a re-
sponse is indicated, the time is recorded. If the thread that
is responsible for carrying out this task is momentarily
preempted, the time will not be read until that thread re-
gains control, and the RT will be overestimated.

Solutions to the Timing Problems
Display timing errors. The solution to the problem of

timing the display is provided by the high-performance
timer, a piece of hardware on all Pentium-class mother-
boards. This device keeps track of elapsed time down to
submicrosecond accuracy (1.19 MHz) and operates au-
tonomously, regardless of what application is currently
running. If DMDX fails to detect a refresh signal, DMDX
will discover the error when it notes that, according to the
high-performance timer, more than 16.666 msec (or what-
ever the refresh rate actually is) have elapsed since the last
refresh. DMDX then simply assumes that a refresh must
have occurred and adjusts its counter accordingly.

This process could be repeated indefinitely. For exam-
ple, if DMDX has been told that the display must be
changed after 200 ticks (a tick is the time taken for one re-
fresh cycle), it could theoretically ignore the raster for 199
ticks, using the high-performance timer to keep track of
the elapsed time. However, since the clock speed for the
timer and the raster might differ slightly, a slight drift
could occur over such a long time period. To avoid this
problem, DMDX resynchronizes itself with the raster
whenever possible, reducing drift to negligible amounts.

This procedure copes with all errors except one, and
that is when an error occurs on the final refresh cycle. For
example, suppose that a target word is to be displayed for

http://www.u.arizona.edu/%7Ekforster/dmastr/dmastr.htm
http://www.u.arizona.edu/%7Ekforster/dmastr/dmastr.htm
http://www.microsoft.com/directx/download.asp
http://www.microsoft.com/directx/download.asp

118 FORSTER AND FORSTER

three ticks but, on the third cycle, the refresh signal is
missed. This means that the display of this stimulus will
not be terminated until the next refresh cycle, which
means that the duration of the stimulus will be one tick
longer than it should have been.

There is no way to recover from such an error. However,
in our experience, it is extremely unlikely, given adequate
video card drivers. The reason is that DMDX queues dis-
play buffers (up to 24 frames), so that the material for the
next frame is already loaded into the appropriate video
page. All that is needed for correct operation is that a re-
quest to switch to the next video page be issued at any
point during the current refresh cycle. The switch then
takes place automatically when the refresh cycle is com-
pleted. In order for an error of this type to occur, the dis-
play thread would have to be preempted for an entire re-
fresh cycle. Given a reasonably fast CPU, this is not going
to happen very often. On the fairly slow test machines
used in our laboratory (166-MHz Pentium MMXs), the
probability of such an error appears to be very small.

The probability of an error’s occurring can be deter-
mined by running the tests provided in TimeDX. However,
knowing that a display timing error is likely to be rare is
reassuring, but one might still want to know whether an
error occurred during an actual experiment and, more im-
portant, when it occurred. This information is provided to
the user in the output file. If a given frame is displayed
later than it should have been, the item number of the trial
and the frame number are indicated, along with the size of
the error. So even if errors do occur, the user can discard
the data from those trials. In our experience, such errors
are extremely rare when DMDX is run as the only appli-
cation. We have scanned the output from our laboratory
machines for more than 100,000 time-critical trials involv-
ing masked priming (where the precise duration of the
prime was absolutely critical) and have found only two ex-
amples where a frame was displayed longer than sched-
uled. In one case, the error was in a noncritical frame, and
in the other, the critical frame was displayed for one tick
longer than specified. However, on an office desktop with
multiple applications loaded (e.g., antivirus software,
alarms, calendars, backups, e-mail, etc.), display errors can
be quite common.

The major cause of display errors appears to be the
quality of the video drivers supplied with the graphics
card, rather than the CPU speed. Very often, display errors
can be corrected simply by downloading the latest drivers.
However, with a moderately fast CPU (500 MHz), one can
virtually guarantee error-free displays.

Response timing errors. As was mentioned above,
measurements of RT may be subject to similar problems.
The nature of the problem will depend on the input device.
DMDX supports a parallel I/O card (PIO12), a joystick or
gamepad (connected via the game port or a USB port), a
mouse, a keyboard, or any other input device that has Di-
rectX drivers.

DMDX polls the status of the PIO12 and the joystick
every millisecond, but this operation depends on the mul-

timedia timer callback originating from the Windows ker-
nel. DMDX requests the kernel to call it every millisecond,
but in actual fact, the interval between successive callbacks
varies, depending on what other tasks the kernel was at-
tending to.2 So if the callback immediately following the
occurrence of the response is delayed, the RT will be over-
estimated. The severity of this error can be estimated by
using the test routines provided in TimeDX (see below).

For the mouse and keyboard input, the nature of the
problem is slightly different. The occurrence of mouse
clicks and keypresses is signaled to DMDX by DirectX
and, hence, is subject to the variation that introduces.

The only real solution to this problem would be to in-
stall independent hardware capable of detecting when a
stimulus appears on the display screen and measuring ac-
curately the time until a response occurs. Such a system
has in fact been used by McKinney, MacCormac, and
Welsh-Bohmer (1999). However, this requires the user to
purchase additional hardware for each experimental sta-
tion, and the cost–benefit ratio of this solution might be
high. For example, an average error of 61.5 msec can
probably be safely ignored in most RT experiments.

How DMDX Operates With DirectX
The input to DMDX is an .rtf file (rich text file), gen-

erated by applications such as Word or WordPad. This is
referred to as the item file or script and specifies what is
to be displayed and how it is to be displayed (see the ex-
amples below). The first line of this file (termed the Pa-
rameter line) specifies such things as which input devices
are to be used, the video display mode to be used, the de-
fault exposure time for a frame, and so forth.

Preliminary preprocessing. Initially, DMDX parses
the item file taking note of all RTF control codes. Next, if
the item file calls for scrambling of items, the scrambling
routines produce another file that contains a pseudoran-
dom item sequence. Following these preliminary opera-
tions, the various processes that make up DMDX proper
are begun. First DirectX is instructed to switch the screen
to whatever display mode has been requested in the item
file. That mode must have been set up with TimeDX be-
forehand, since DMDX reads the value of the refresh rate
from the registry that TimeDX puts there. It also requests
that as many screen buffers as can be contained in video
memory be created. These are called DirectDraw Sur-
faces. Beside the primary surface that is always displayed,
there can be a large number of “back” surfaces that
DMDX uses for buffering (up to 24 on an 8M video card
at 640 3 480 with 8 bits per pixel [bpp]). Following this,
the millisecond callback from the Windows kernel is ini-
tiated. Next, a thread is created to keep track of the retrace.
A thread is another task running in parallel with the orig-
inal program (itself just another thread). The retrace thread
spends most of the time sleeping (i.e., allowing other
threads to execute). Once each retrace period, it wakes up
and waits for a number of milliseconds until it either finds
the retrace or decides that it has missed it; in either event,
counters are updated, and DMDX then decides what should

DMDX 119

happen next. As was indicated earlier, in most cases, miss-
ing a retrace is not a problem, so long as DMDX gets con-
trol back before the next retrace.

A thread is also created for each input device specified
in the item file (the default being the keyboard). Threads
for keyboards and mice and any other interrupt-driven de-
vices simply wait for input data, whereas all other polled
devices have threads that are woken up periodically by the
millisecond callback to check whether a key is being
pressed. Another thread can exist to handle requests to play
sound files; however, this thread is not created until DMDX
finds a request to play a sound. At that time, the sound
system as a whole is initiated, and the sound thread is cre-
ated, which can take quite a number of milliseconds. If
DMDX is going to be used primarily to present audio
stimuli, the priority of the audio thread can be increased
by the user.

Per-item processing. An item is presented when the
subject requests it, either by pressing a key or by pressing
a footpedal, and so forth. Prior to the request for an item,
DMDX performs all disk-related tasks. The experimenter
can specify the delay between the request and the first
frame, but care must be taken to ensure that sufficient time
is allowed for these tasks to be completed (DMDX pro-
vides an output indicating the time taken to prepare
items). Disk-related tasks include writing diagnostics to
disk, writing result files to disk, reading the item to be dis-
played (although this is likely to have been buffered in
memory, since DMDX uses file mapping), and reading
the bitmaps and sound files used in the item and storing
them in the appropriate buffers. If a sound file is used for
the first time, this is when the sound system is initiated.

Once the request has been received, DMDX prepares
each individual frame in a separate DirectDraw surface
(stored in main memory, rather than in screen memory). It
then ascertains which screen surface that frame will be
displayed in and what information needs to be preserved
or erased from the previous display. Having done that, it
creates a surface just big enough to contain the region that
will change on the screen surface and copies the corre-
sponding region of the memory surface to this new tem-
porary surface. Once everything is drawn, DMDX sched-
ules the frames for display and adds them to the display
queue. This consists of a queue of frames, along with the
time at which they must be displayed.

Per-frame processing. DMDX’s main thread watches
the display queue to see whether any of the screen surfaces
become empty (or are already empty at the item’s com-
mencement) and moves the display queue surfaces onto
the screen surfaces one segment at a time, in order to avoid
locking out all other threads for a substantial period of
time. When a video retrace is detected, the retrace thread
examines the display queue to determine whether the next
screen surface should be activated (flipped), when sounds
should be commenced, when output bytes should be out-
put, when the timing of the response should begin, and so
forth. The timing of these requests is calculated ahead of
time and is stored on another queue, which is examined by
the millisecond callback thread. The operations controlled

in this way include initiation of a sound sequence, output
of information to a parallel I/O card, polling of input de-
vices, calculation of RTs, and so forth.

Accuracy of Timing
In order to determine just how serious the timing errors

might be, we have extensively tested the accuracy of
DMDX with various input devices, and these data are re-
ported in the next sections. Readers can judge for them-
selves whether the accuracy is sufficiently high to meet
their needs.

Video synchronization. It is one thing to be told that
DMDX is synchronized with the video raster, but another
to be able to see that it is. Users can easily verify this for
themselves by constructing a series of frames, each con-
sisting of a column of Xs displayed one column to the
right of the preceding frame. Each frame is displayed for
some brief interval. If there is no synchronization, then
occasionally, the display will be incomplete. For example,
the first two columns might be complete, but only the first
half of the third column is displayed, and the rest of the
display is blank. With repeated viewing of the same se-
quence, it is not difficult to determine whether each col-
umn gets displayed. With perfect synchronization, this
should always be the case.

Accuracy of refresh rate timing. TimeDX provides
such a test. The test swaps the contents of the video page,
so that the display alternates between a red background and
a blue background. The swap is made regardless of the po-
sition of the raster (some versions of DirectX and some
video card drivers do not permit such an operation). The
timing of these swaps is controlled by the high-performance
timer, the interval between the swaps being exactly half
the retrace interval (i.e., at a rate twice that of the refresh
rate). If TimeDX is using the correct value for the refresh
rate, there will be perfect synchronization between the
time at which the swap occurred and the position of the
raster. The display will consist of two segments—the top
segment would be red, the bottom would be blue, and the
border between them would be stationary, with the excep-
tion of a few flickers as TimeDX gets preempted by other
processes. If the buffers are swapped at a slightly faster rate
than the refresh rate, the border will scroll slowly up the
screen; if the buffers are swapped at a slower rate, the bor-
der will scroll down the screen. If the border is scrolling
slowly, the user can adjust the swap rate until the border be-
comes stationary. This gives a new, more accurate measure
of the refresh rate, which can then be stored in the registry.

Accuracy of display timing. In language-processing
tasks, such as RSVP (Forster, 1970), a sentence is dis-
played one word at a time at a rapid rate. If DMDX can-
not move the display queue surfaces onto the screen sur-
faces rapidly enough, a display error occurs, and one or
more of the frames will be displayed for a longer period of
time than specified (most likely, for one screen refresh),
which would distort performance on that item. To assess
DMDX’s performance under these conditions, we selected
an older Pentium (166 MHz) with 64 MB of RAM and a
4-MB S3 Virge video card, running under Windows 98. A

120 FORSTER AND FORSTER

phototransistor was placed at the top left corner of the
screen. A 10-word sequence was then displayed in white
letters on a black background at the middle of the screen,
each word being displayed for two refresh cycles (for this
setup, 27.46 msec). The video mode was 640 3 480 with
8 bpp. As the first word was displayed, the RT clock was
turned on. At the conclusion of the sequence, a white
mask was briefly displayed, which activated the photo-
transistor, which in turn triggered a response to the dis-
play, using the parallel I/O interface. If there were no display
errors, each frame was displayed for exactly the number of
refresh cycles specified by the item script, the determina-
tion of the refresh cycle time by TimeDX was accurate,
and the calculation of the RT functioned perfectly, then
the observed RT should be 10 3 27.46 5 274.6 msec, plus
the time required for the phototransistor to trigger a re-
sponse. If a display error occurred and a frame was dis-
played for three refresh cycles rather than two, the RT would
be longer by a factor of 13.73 msec (one refresh cycle). If
more than one display error occurred, the RT would be in-
creased still further. However, over 100 tests, no display
errors were reported by DMDX. The mean RT was 278.56
msec with a standard deviation (SD) of 0.53 msec (the
range being 277.1–279.4 msec). This amounts to an error
of less than 4 msec, most of which was due to the time
taken for the phototransistor to stop the clock, with the re-
mainder being due to an error in registering precisely
when the response occurred (see the next section). Given
the fairly demanding nature of the RSVP display require-
ments, this performance seems entirely adequate.

In the previous test, the video mode allowed DMDX to
use 12 buffers, which means that the entire sequence
could be assembled and buffered prior to the display.
Switching to a 640 3 480 display with 16 bpp instead of
8 (double the memory requirements) restricted DMDX to
only five buffers,3 meaning that the entire sequence could
not be assembled in advance. However, under these con-
ditions, once again no critical display errors were re-
ported, and performance was virtually unchanged, with a
mean RT of 278.99 msec with an SD of 0.53 msec.

Response timing. Errors in response timing can arise
from several sources, such as the physical properties of
the input device itself (e.g., switch closure time) or the na-
ture of the interface (e.g., serial vs. parallel input). As far
as the software is concerned, the main source of error is a

delay in the millisecond callback from the Windows ker-
nel. If the hardware has registered that a response has oc-
curred but the millisecond callback to DMDX has been
delayed, the time at which the response occurred will be
recorded incorrectly. To test the accuracy of response tim-
ing, we constructed test hardware that produced a elec-
tronic switch closure4 every 524.3 msec (a 2.000-MHz
crystal divided by 2 to the 20th power). This interval was cho-
sen to approximate the length of the average lexical deci-
sion time, which is the most commonly used task in our
laboratory. One useful feature of DMDX is that it includes
a number of different modes of operation, designed to as-
sist the user in evaluating the performance of his or her
own installation. One of these test modes (Test Mode 8) sim-
ply records the time between successive response signals.

The machine tested was an AMD-K6 300 with a Riva
128 4M video card and 64 MB of RAM, running under
Windows 98. Table 1 shows the frequency distributions of
timed interresponse intervals obtained with various input
devices under different conditions, using Test Mode 8.
The first four tests listed in Table 1 were carried out with
the recommended input device—namely, a parallel I/O
card (a MetraByte PIO12).

In every case, the mean interresponse time was
524.3 msec. However, this is misleading, since any delayed
callback is issued as soon as the kernel regains control.
So, if one callback is delayed by 1.5 msec, the interresponse
time will be overestimated by 1.5 msec, but the next will be
underestimated by exactly the same amount. The more im-
portant values are the SDs. For the PIO12 input device tested
without any simultaneous activity, the SD was 0.84 msec.
In practical terms, this means that the measurement error
was less than 1 msec on 75% of the trials and, on the re-
mainder, was never greater than 2 msec. These figures
were obtained using Version 1 of DMDX. A similar test
carried out on the improved Version 2 of DMDX, using a
Celeron 400 multimonitor system with a Riva TNT 16M
primary display (for the experimenter) and an S3 Virge
GX 4M secondary display (for the subject), produced an
SD of 0.77 msec. Neither of the machines used for these
tests had a CPU speed (300 and 400 MHz) that could be
described as fast by today’s standards.

Other tests were carried out under more stringent con-
ditions. Table 1 shows the results when the same test was
carried out while DMDX was playing a 11025-KHz 16-bit

Table 1
Frequency Distributions of Interresponse Times for DMDX Operating With Different

Input Devices Under Varying Load Conditions (Running on an AMD-K6 300-MHz
Machine Under Windows 98)

Observed Time Interval (msec)

Input Device 508–521 522 523 524 525 526 527 530 N SD

PIO12 (no load) 0 0 87 200 239 46 0 0 572 0.84
PIO12 with sound 0 2 90 193 227 50 0 0 562 0.87
PIO12 with graphics
load (30 3 250 3 8 bpp) 0 12 81 170 180 59 7 0 509 1.01
PIO12 with network load 0 0 92 196 230 53 0 0 571 0.86
Mouse (no load) 0 0 3 334 222 12 0 0 571 0.55
Keyboard (no load) 89 0 7 1 0 152 321 1 571 5.15

DMDX 121

.wav file lasting approximately 3 sec. The SD in this situ-
ation was 0.87 msec, virtually the same as that without the
sound file. This indicates that the demands imposed by
playing a sound file have very little impact on accuracy of
response timing.

A more stringent test was to measure accuracy under
unusually severe conditions. Normally, tachistoscopic ex-
periments involve a brief display of a single image, followed
by some type of mask and then nothing. A more demand-
ing situation is one in which an extended series of images
must be displayed in rapid succession—for example, a
different display every 100 msec. This test produced an
increase in the variability (SD 5 1.01 msec). However, the
maximum error never exceeded 3 msec.

Since the machines running DMDX are likely to be
connected to a local Ethernet network, one might ask
whether the amount of traffic on the network is likely to
interfere with the measurement of RTs. This was tested
with an ISA 3Com Etherlink III card by transferring a
500-MB file between two other computers over the net-
work, producing a constant 5-Mbps load while the timing
test was carried out. There was again no detectable effect
(SD 5 0.86 msec). It should be noted that 5 Mbps is an ex-
tremely large amount of traffic.

Other input devices were also tested. For example, a
Microsoft Serial Mouse 2.0A (with the ball removed) pro-
duced an SD of only 0.55 msec. The keyboard proved to
be far more variable, with the SD jumping to 5.15 msec.
The maximum error was a huge 16 msec, but this oc-
curred only once out of 571 trials. However, it should be
noted that this variability has nothing to do with the soft-
ware or the operating system but depends on the circuitry
involved in the particular keyboard. Some keyboards poll
the keys at a faster rate than others and may well produce
better results. Hence, the results listed here must be treated
as illustrative only.

Measuring variability in absolute RTs. Another
method of testing involved triggering a MetraByte PIO12
input card with a phototransistor focused on the monitor
display. In this test, the response occurs immediately after
the stimulus becomes visible (to the phototransistor). Any
variation in the observed latency must, therefore, reflect
variation in the callback routines from the Windows ker-
nel. Over 100 trials, this procedure produced a standard

deviation of 0.29 msec. This means that 95% of the ob-
servations fell within an interval of 1.16 msec, which is al-
most exactly millisecond accuracy.

The SD gives a measure of variability but says nothing
about the constant error. Does DMDX overestimate the
true RT and, if so, by how much? There are two points to
make here. First, the absolute RT is rarely the object of
interest. Usually, we are interested in differences across
conditions, and in this case, the constant error is irrele-
vant. Second, it is difficult to get a measure of the “true”
RT—that is, one that is independent of the physical equip-
ment used to measure it. For example, we can focus a pho-
tocell on the screen (as in the previous example) that fires
a 12-V solenoid as soon as the display is detected, which
in turn depresses a switch of some kind. Ideally, the ob-
served RT would be close to zero. However, with the so-
lenoid depressing a PIO12 microswitch, the RTs ranged
from 18 to 20 msec. But without knowing how long it
takes the photocell or the solenoid to respond or how long
it takes for the key to be pushed its full travel distance, we
cannot really interpret this figure. All we know is that the
constant error cannot be larger than this figure but is likely
to be very much smaller. However, we can at least rank
input devices according to the size of this error. The val-
ues obtained are shown in Table 2.

The clear indication from the data in Table 2 is that one
needs to be very careful about using a keyboard, since ob-
viously there is considerable variability from one device to
another. On the other hand, the data for the particular MS
Serial mouse that we tested were surprisingly good. Al-
though the RTs might be overestimated, the variability
was quite small and did not vary as a function of whether
the ball was removed or not. However, it should be
stressed that this may be true of only this particular mouse.
There may be considerable variation in performance
across different manufacturers, or even within a given
model. Finally, by far the best performance is produced by
the PIO card, although a conventional joystick or gamepad
comes very close.

Variation in callback latencies across operating
systems. As was mentioned earlier, one source of error in
response timing is the fact that the Windows kernel does
not always activate DMDX every millisecond. TimeDX
provides a quick method of measuring variation in the

Table 2
Minimum and Maximum Response Times

With Different Input Devices

Device Response Times (msec) Comment

PIO12 microswitch 18–20 Baseline (involves smallest amount of travel)
PIO12 KB switch 31–33 Longer values due extra 6 mm of travel
Generic joystick
(also gamepad) 28–31 Polled at the default rate (every 3 msec)
MS serial mouse (without ball) 44–50
MS serial mouse (with ball) 46–52
Old AT keyboard 40–47 Note variation across different keyboards
OmniKey 102 KB 33–40
Cheap Win95 KB 33–69

122 FORSTER AND FORSTER

callback latency. This is not a perfect indicator of the SD
while DMDX is executing, since TimeDX is not playing
audio files, polling input devices, or keeping track of the
position of the raster, although it is involved in fairly in-
tensive screen output. Nevertheless, it provides a relative
measure that is suitable for comparing different CPUs and
different operating systems. Under Windows 98, the test
machines used to generate the data in Table 1 produced a
callback SD of 0.29 msec. Under Windows 2000, this vari-
ability was reduced to only 0.07 msec. Under Windows ME
and XP, the SD was 0.08 msec. It is worth noting that ini-
tially, the disadvantage of Windows 2000 and XP was that
the PIO card could not be used as an input device (or as an
output device), because no drivers for this device were
available. However, this is no longer the case.

Conclusion. Considering the amount of variation in
the time required for even simple cognitive operations,
where SDs for a given individual in excess of 100 msec are
not uncommon, it appears that the amount of noise intro-
duced by timing errors in DMDX are relatively minor.
However, it must be stressed that the figures reported in
Tables 1 and 2 are valid only for the particular configura-
tions used in our laboratory. Faster CPUs and more effi-
cient graphics cards will reduce the variability still further.

Why Is a Win32 System Thought
to be Inadequate?

If timing problems are so effectively coped with, one
might ask why commentators such as Myors (1999) have
asserted that Windows is totally inadequate for precise
timing. For example, Myors used the keyboard autorepeat
as a signal generator, rather than an external response de-
vice, as we have, and ran a program written to time the in-
terval between received keystrokes. When this program
was running in a DOS window under Windows 95, it was
incapable of detecting the video retrace and yielded a dis-
tribution of times with an SD of 16.0 msec, whereas the
same program running in MS-DOS mode (when Windows
was not active) produced an SD of only 0.06 msec.
Clearly, Myors’s test yielded an unacceptably high SD for
the Windows test, whereas our tests did not.5

Why should there be such a difference? The answer is
that the example Myors used was a program written for
DOS. He found that this was far more accurate when it is
run under DOS than under Windows. What it should have
been compared with is a comparable program written for
Windows. DMDX is a program written specifically to
take advantage of the functionality offered by Win32,
whereas Myors’ program ignored it.

The Capabilities of DMDX
System requirements. To run at all, DMDX requires

a Pentium PC running Windows 95, 98, 98SE, ME, XP, or
Windows 2000, with at least DirectX 5 installed, with Di-
rectX 7 providing some enhanced timing (DirectX ver-
sions beyond 3 are not permitted with Windows NT). A
CPU speed of 500 MHz is ideal, but not essential, since the

lab machines at the University of Arizona run perfectly
well at 166 MHz. To run effectively, 64 MB of RAM are
sufficient, with a 4-MB video card and a sound card. It
should be noted that a parallel I/O card can now be used
with Windows 2000 or XP, which is essential for the co-
ordination of the operation of DMDX with external de-
vices, such as fMRI scanners and so forth.

Operating modes. DMDX runs in several different
modes. The standard mode is a simple RT situation, in
which the subject makes a binary classification of the
input. There are three inputs: a positive response, a nega-
tive response, and a request. The request initiates a new
trial and is used for self-paced experiments. These inputs
can be interfaced with a parallel I/O card, a mouse, a game
pad (or joystick), or the keyboard (with the concomitant
cost to RT accuracy).

In addition, there is a mode in which the subject can
make multiple responses over time. DMDX records the
nature of each response and the time at which it occurred.
This mode is normally used with keyboard input, which
makes it possible to record ratings, or typed responses.
Typed responses can be echoed to the display screen.

If a parallel I/O card is installed, DMDX can also be
programmed to output signals to control external devices
or to provide timing signals.

DMDX supports a dual-monitor display mode, in which
the experimenter views a separate display from the sub-
ject. Single-monitor mode is also supported. In addition,
it is possible to track the course of an experiment from a
remote location, since DMDX can be programmed to send
information about each trial as it occurs to a user-specified
Internet address.

DMDX also provides a digital VOX mode, designed for
recording vocal onset latencies. This eliminates the need
for an external device. Users can specify the threshold in-
tensity required to trigger the VOX and have the option of
obtaining a .wav file output for each trial, indicating the
point at which the VOX was triggered, so that after the
testing session, the experimenter can review the appropri-
ateness of the trigger point and adjust the measured RT
accordingly.

Types of display. DMDX supports standard Windows
graphics, which includes Windows fonts and .bmp and
.jpg files. Sound files (.wav files) can be played simulta-
neously with graphical displays, allowing for cross-modal
experiments. Considerable effort has gone into the proce-
dure for synchronizing visual probes with audio f iles.
Support for the display of digital video files (.mpg, .mov,
or .avi) is also provided. Users can measure RTs to criti-
cal frames within these files, although the timing here is
more subject to variability.

Experimental scripts. The experiment is controlled
by a script written in rich text format (.rtf), using Mi-
crosoft Word or WordPad. The first line of the script sets
a number of parameters, such as the default frame dura-
tion, whether the items are self-paced, how the order of
the items should be scrambled, and so forth. The specifi-

DMDX 123

cations for each item then follow. A typical item in a lex-
ical decision experiment testing for semantic priming
might look like this:
1001 “1” %70 / “doctor” %35 / * “NURSE” %70 / ;

The plus sign at the beginning of the item indicates that
the correct response is a positive (yes) response (i.e., the
target, “NURSE,” is a word). Everything between quotation
marks is displayed on the screen, by default centered both
vertically and horizontally. The display sequence is di-
vided into a series of frames, and the “/” symbol functions
as a frame delimiter. In this example, when a request for a
display is received, the first frame displaying a fixation
point (“1”) is presented. The duration of this frame is de-
termined by the frame timer “%70,” which specifies that
the next frame onset should be delayed by 70 video ticks.
For a monitor refreshing at 70 Hz, this would be 1,000 msec.
The next frame presents the word “doctor” for 35 ticks,
and this is then followed by the frame presenting the tar-
get, “NURSE.” Simultaneous with this frame onset, the RT
clock is turned on (indicated by the symbol “*”). After 70
ticks, this frame is replaced by a blank frame. The end of
the item is signaled by the symbol “;”.

The expression “%70” is one example of a “switch,” as
is the clock-on symbol “*”. There are over 170 switches
that can be embedded in a frame, each of which controls
some aspect of the display. For example, the switch “!”
means that the current frame does not replace the previous
frame but is superimposed on it. Many of these switches
are indicated by a single symbol (these guarantee com-
patibility with scripts written for the older DOS pro-
grams); others are enclosed in angle brackets. For exam-
ple, the switch ,line 1> means that the text should be
displayed one line below the default display line (the cen-
ter of the screen). The switch ,nfb> specifies that there
should be no feedback (the default condition is that, after
each response, a message is displayed informing the sub-
ject of the correctness of the response and the RT). If the
material to be displayed is a graphics file, the switch ,gr>
is specified, and the material in quotation marks becomes
the name of the file to be displayed. Switches in the form
of x-, y-coordinates are provided to position either text or
graphics at any location on the screen.

Counters are provided, so that such things as the num-
ber of errors or the total number of trials completed can be
tracked, and integer arithmetic is provided, enabling the
calculation of the mean RT or the current error rate. Con-
ditional branching is possible, so that the item sequence
can be controlled by such things as the subject’s response
to a question or the contents of a counter. Provision is also
made for various methods of scrambling the order of items
individually for each testing session.

The general aim has been to provide a scripting system
that specifies relatively low-level operations, in order to
maximize generality. For some unusual applications, this
sometimes leads to a fairly cumbersome script, with a spe-
cial set of switches needing to be included in every item.
This is easily coped with by using find and replace com-
mands in Word, although the resulting script may be diffi-

cult to read. One example of such an application involves
the ability of DMDX to present selected items a second
time if they elicited an error the first time. The method in-
volves defining a counter for each item as it is presented
and then incrementing it if the response was correct:

1100 < set c100 5 0. “HOUSE” *
,IncrementIfCorrect 100.;

2101 < set c101 5 0. “FLIDGE” *
,IncrementIfCorrect 101.;

This creates a counter labeled “100” and sets it to zero.
The value of this counter is incremented if the current re-
sponse (i.e., the response to the item “HOUSE”) is correct.
Subsequently, every item is scheduled for display again
but is preceded by an instruction to branch if the appro-
priate counter has a positive value:

,SkipDisplay. 0 ,BranchIf 0, c100 .gt. 0.;

11001 “HOUSE” *;

,SkipDisplay. 0 ,BranchIf 0, c101 .gt. 0.;

21011 “FLIDGE” *;

etc.

This first statement causes a branch to the next item num-
bered “0” if counter 100 is positive (i.e., the next branch
statement). Otherwise, control passes to item 1001, where
“HOUSE” is presented again with a different item number.
The ,SkipDisplay. switch at the beginning of each branch
statement informs DMDX that this item does not involve
any display, and no response is expected from the subject.

Construction of scripts such as this is made easier by
using a spreadsheet such as Excel. Using a function such
as Concatenate, the above commands can be automati-
cally generated from just the item number and the test
item itself. An example of an Excel scripting file is avail-
able as part of a package of useful DMDX utilities from
the DMDX download site.

In addition, we have compiled a set of example scripts for
standard experimental paradigms, such as lexical decision,
naming, self-paced reading, picture naming, word identi-
fication, masked priming, fMRI scanning, and so forth.
This also can be accessed from the DMDX homepage.

An on-line manual for the construction of scripts for
the DOS-based DMTG system can be found at the follow-
ing address: http://www.u.arizona.edu/~kforster/dmastr/
dm_man0.htm. Since DMDX is an extension of DMTG,
many of the basic features of the DMDX scripts are out-
lined here. Tutorials on the use of DMDX can also be
found on the DMDX homepage.

User assistance. On-line help files for DMDX and
TimeDX are included in the download package, and these
can also be accessed via the Web at http://psy1.psych.
arizona.edu/~jforster/dmdx/help/dmdxhdmdx.htm and
http://psy1.psych.arizona.edu~jforster/dmdx/help/timedx
htimedxhelp.htm. In addition, there is a DMDX user list
serv where users can post queries. Currently, there are
about 150 users located in countries such as Australia,

http://www.u.arizona.edu/%7Ekforster/dmastr/dm_man0.htm
http://www.u.arizona.edu/%7Ekforster/dmastr/dm_man0.htm
http://psy1.psych.arizona.edu/%7Ejforster/dmdx/help/dmdxhdmdx.htm
http://psy1.psych.arizona.edu/%7Ejforster/dmdx/help/dmdxhdmdx.htm
http://psy1.psych.arizona.edu
http://psy1.psych.arizona.edu

124 FORSTER AND FORSTER

U.K., U.S.A., Israel, France, Spain, Germany, China, Tai-
wan, Japan, and Kazakhstan.

How to Obtain DMDX
The complete DMDX package can be downloaded

from the homepage for DMDX, which can be accessed by
following the links from the DMASTR Web site: http://
www.u.arizona.edu/~kforster/ dmastr/dmastr.htm. This
package includes the program TimeDX, which is an es-
sential partner for DMDX and which must be run to select
the desired screen resolution and to time the refresh rate.
Also included are examples of scripts that execute various
tasks.

REFERENCES

Forster, K. I. (1970). Visual perception of rapidly presented word se-
quences of varying complexity. Perception & Psychophysics, 8, 215-
221.

MacInnes, W. J., & Taylor, T. L. (2001). Millisecond timing on PCs
and Macs. Behavior Research Methods, Instruments, & Computers,
33, 174-178.

McKinney, C. J., MacCormac, E. R., & Welsh-Bohmer, K. A.
(1999). Hardware and software for tachistoscopy: How to make accu-
rate measurements on any PC utilizing the Microsoft Windows oper-
ating system. Behavior Research Methods, Instruments, & Comput-
ers, 31, 129-136.

Myors, B. (1999). Timing accuracy of PC programs running under DOS
and Windows. Behavior Research Methods, Instruments, & Comput-
ers, 31, 322-328.

NOTES

1. On some early Windows 95 systems, DirectX was not included. Di-
rectX can be downloaded from the DMASTR site or from Microsoft.

2. Actually, on some machines there are always 998 callbacks per sec-
ond, but they do not arrive at equal intervals of time.

3. This limit depends on the memory of the video card.
4. Myors (1999) used a similar procedure involving the autorepeat

function of the keyboard. This is not possible with DirectX, since auto-
repeat codes are filtered out.

5. The SD that Myors (1999) obtained for the DOS test is nevertheless
well below the value of 0.84 reported for DMDX in Table 1. This is per-
haps not surprising, since Myors’s program was extremely simple and
was designed to do nothing other than time the video retrace or the in-
terval between keystrokes (but not both at the same time). In contrast,
DMDX was tested while it was carrying out both of these tasks simulta-
neously and, in addition, accessing the hard drive and assembling the
material to be displayed, not to mention monitoring network traffic. It
should also be noted that more recent tests running DMDX under Win-
dows ME or XP on newer hardware produced SDs that were very close
to Myors’s DOS values.

(Manuscript received March 16, 2001;
revision accepted for publication August 6, 2002.)

http://www.u.arizona.edu/%7Ekforster/
http://www.u.arizona.edu/%7Ekforster/
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2933L.174[aid=1522885]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2931L.129[aid=1522875]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2931L.322[aid=1522876]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2933L.174[aid=1522885]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2931L.129[aid=1522875]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0743-3808^28^2931L.322[aid=1522876]

